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Study of defects in linear FFAG, preliminary steps

Kicks method
Zgoubi developments
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1 Closed orbits errors

We first study equivalent kicks for further comparisons with tracking si-
mulations.

Dipolar type of errors due to magnet misalignement and dipole field de-
fects can be approximated by pairs of entrance/exit kicks such that :

θen/θex = ∆(Bl)/(Bρ)

∆(Bl) representing the effect of the imperfection

The kicks equivalent to the defects are calculated using :

– Matrix formalism
– Geometric considerations concerning misaligned magnet
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1.1 Use of matrix formalism
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FIG. 1 – EMMA cell.

Combined fonction magnet are represented with the matrix :

– QF, K > 0 Bdip < 0
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– QD, K < 0 Bdip > 0
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x,y,x,y’ are coordinates with regard to perfect magnet axis and X,Y,X’,Y’ with regard to misaligned
magnet axis. Mx and My are transfert matrix of misaligned magnet :
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Kicks are placed at entrance and exit of perfect magnet :
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X
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Mx (or Mz) are under the form
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we need to find relations (1) for a type of imperfection. As we know matrix Mx,z (see previous) we can
calculate the new transfert matrix and identify to (2) to extract θe, θs.
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1.2 Example : Vertical rotation φy

L3

L2 Φ

Particle trajectory

L1

> 0

L4

xe
Xe

y

x’e < 0

X’e < 0

X’’

X’

x
X 

y s

Geometric relations are (with first order ap-
proximation) :

Xe = xe + φy
L
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Considering QF we get :
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Identifying 2 et 3 we get :

b θxe = −b φy +
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and finally :
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We find that entrance and exit kicks have the same amplitude and are equal or opposite

horizontal kicks

Defects :
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Dipole field defect Foc. θxe = θxs = −Bdip
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vertical kicks

Defects :

vertical displacement Foc. θye = θys = −
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1.3 Calcul of kicks for EMMA

QD QF
E MeV 10 15 20 10 15 20

Dév. ang. hor :

θ/δxD/F -4.60 -3.12 -2.36 7.18 4.67 3.46
θ/φyD/F

0.056 0.037 0.028 -0.068 -0.045 -0.034
θ/∆B/Bdip -0.077 -0.052 -0.0395 0.049 0.032 0.024

Dév. ang. vert :

θ/δyD/F 5.15 3.36 2.495 -6.275 -4.27 -3.23
θ/φyD/F

-0.057 -0.038 -0.028 0.066 0.044 0.033

1.4 Comparison Ray-tracing / Matrix

10 MeV
xe,co x′

e,co ys,co y′
s,co

QF enter -0.57215 -55.73924 0.0001 0.0000
xs,co x′

s,co ys,co y′
s,co

Perfect magnet Ray-tracing -0.41546 104.584 0.0001397 0.01386
Matrix -0.41617 104.380 0.0001406 0.01441

with defect δxF =10 µm Ray-tracing -0.41510 104.696
Matrix -0.41581 104.492

with defect δyF =10 µm Ray-tracing -0.0002577 -0.12475
Matrix -0.0002660 -0.12969
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1.5 Numerical simulations of defects

Gaussain distribution of defects, the sigma valuss add quadratically
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are calculated numerically with a Zgoubi procedure
#!/bin/bash
# 1/ genDefect : generate zgoubi.dat with random defects, from defect free
# structure read in zgoubi_NoDefect.dat.
# The random seed is read from genDef and renewed (new value stored in
# genDefect.seed) at end of genDefect
# 2/ run zgoubi using AVEAGEORB and REBELOTE/NREB=100, so to get PU records
# over 100 turns
# 3/ readPU : reads PUs from last pass in zgoubi.res, and cumulates (run after
# run) into readPU.out
# 4/ content of readPU.out is s, <x>, <xp>, <z>, <zp>, PU#, and can be plotted
# using zpop/7/20
#

f77 -o readPU readPU.f
f77 -o genDefect genDefect.f

#
# 5/ Optionnaly, ./genDefect_IniSeed will force initial seed to given value,
# this allows checks thanks to identical series of random number series
#
rm readPU.out
rm b_zgoubi*.fai
#
./gebDefect_IniSeed
#

echo ’ ’
echo ’ -----------------------------------------------------’
echo ’ COMPUTATION/STORAGE OF C.O. INDUCED BY MAGNET DEFECTS’
echo ’ ’

X=1
while [ $X -le 100 ]
do

echo ’ ’
echo ’ ----------------’
echo ’c.o. computation #’$X ’ follows’

X=$((X+1))
echo ’c.o. computation #’$X

˜/zgoubi/source/zgoubi
./readPU

done
exit
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1.6 Conclusions

We expect to observe a correlation beetween numerical sensitivity co-
efficient and amplitude of kicks calculated analytically.

It could yield to compare the relative importance of defects on the closed
orbit.

In the future
– Determine tolerance for a chosen σco

– Transmission simulations in presence of defects


